Active-Learning Optimization of the Oxygen 2p Band Center (ε₂p) in ABO₃
Li, K., Persaud, D., Choudhary, K., DeCost, B., Greenwood, M., & Hattrick-Simpers, J. (2023). Exploiting redundancy in large materials datasets for efficient machine learning with less data. *Nature Communications*, *14*, Article 7283. https://doi.org/10.1038/s41467-023-42992-y
Min, K., & Cho, E. (2020). Accelerated discovery of potential ferroelectric perovskite via active learning. *Journal of Materials Chemistry C*, *8*(21), 7118–7124. https://doi.org/10.1039/D0TC00985G
Walker, M., & Butler, K. T. (2025). The carbon cost of materials discovery: Can machine learning really accelerate the discovery of new photovoltaics?. *arXiv preprint arXiv:2507.13246*. https://doi.org/10.48550/arXiv.2507.13246
Xin, R., Siriwardane, E. M. D., Song, Y., Zhao, Y., Louis, S.-Y., Nasiri, A., & Hu, J. (2021). Active learning based generative design for the discovery of wide bandgap materials. *arXiv preprint arXiv:2103.00608*. https://doi.org/10.48550/arXiv.2103.00608
Hong, W. T., Risch, M., Stoerzinger, K. A., Grimaud, A., Suntivich, J., & Shao-Horn, Y. (2015). Toward the rational design of non-precious transition-metal oxides for oxygen electrocatalysis. *Energy & Environmental Science*, *8*(5), 1404–1427. https://doi.org/10.1039/C4EE03869J
Li, W., Jacobs, R., & Morgan, D. (2018). Predicting the thermodynamic stability of perovskite oxides using machine learning models. *Computational Materials Science*, *150*, 454–463. https://doi.org/10.1016/j.commatsci.2018.04.033
Attari, V., & Arroyave, R. (2022). Machine-learning-assisted high-throughput exploration of interface energy space in a multi-phase-field model with CALPHAD potential. *Materials Theory*, *6*(1), Article 5. https://doi.org/10.1186/s41313-021-00038-0
Fronzi, M., Isayev, O., Winkler, D. A., Shapter, J. G., Ellis, A. V., Sherrell, P. C., Shepelin, N. A., Corletto, A., & Ford, M. J. (2021). Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures. *Advanced Intelligent Systems*, *3*(11), Article 2100080. https://doi.org/10.1002/aisy.202100080
Honarmandi, P., Attari, V., & Arroyave, R. (2022). Accelerated materials design using batch Bayesian optimization: A case study for solving the inverse problem from materials microstructure to process specification. *Computational Materials Science*, *210*, Article 111417. https://doi.org/10.1016/j.commatsci.2022.111417
Mia, I., Tiihonen, A., Ernst, A., Srivastava, A., Buonassisi, T., Vandenberghe, W., & Hsu, J. W. P. (2025). Multi-Variable Batch Bayesian Optimization in Materials Research: Synthetic Data Analysis of Noise Sensitivity and Problem Landscape Effects. *arXiv preprint arXiv:2504.03943*. https://doi.org/10.48550/arXiv.2504.03943
AiiDA-FireWorks Scheduler Team. (n.d.). *AiiDA-FireWorks Scheduler Documentation*. ReadTheDocs. Retrieved October 26, 2025, from https://aiida-fireworks-scheduler.readthedocs.io/en/latest/
Chen, C., & Ong, S. P. (2022). A universal graph deep learning interatomic potential for the periodic table. *Nature Computational Science*, *2*(11), 718–728. https://doi.org/10.1038/s43588-022-00349-3
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. *APL Materials*, *1*(1), Article 011002. https://doi.org/10.1063/1.4812323
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Physical Review B*, *54*(16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L., Persson, K. A., & Ceder, G. (2013). Python Materials Genomics (pymatgen): A robust, open-source Python library for materials analysis. *Computational Materials Science*, *68*, 314–319. https://doi.org/10.1016/j.commatsci.2012.10.028
Rosen, A. S., Gallant, M., George, J., Riebesell, J., Sahasrabuddhe, H., Shen, J.-X., Wen, M., Evans, M. L., Petretto, G., Waroquiers, D., Rignanese, G.-M., Persson, K. A., Jain, A., & Ganose, A. M. (2024). Jobflow: Computational Workflows Made Simple. *Journal of Open Source Software*, *9*(93), Article 5995. https://doi.org/10.21105/joss.05995
Rosen, A. S., et al. (2023). *quacc – The Quantum Accelerator*. Zenodo. https://doi.org/10.5281/zenodo.7720998
Uhrin, M., Huber, S. P., Yu, J., Marzari, N., & Pizzi, G. (2021). Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows. *Computational Materials Science*, *187*, Article 110086. https://doi.org/10.1016/j.commatsci.2020.110086